



























































## **Factors Limiting Tomogram Resolution**

Resolution here refers to the ability to resolve features within the tomogram reliably; this is independent of the resolution that can be achieved by averaging information above the tomogram resolution. Factors are:

- · Number of projections relative to thickness of material
- · Density of material within the volume
- Signal-to-noise ratio of input images, determined by electron dose and efficiency of camera
- Resolution of imaging system (microscope and camera)
- Quality of alignment of data entering into backprojection





| The Crowther Resolution Formula<br>(Crowther, DeRosier, and Klug 1970)                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------|
| 1. For D = diameter of reconstructed volume<br>$\Delta \theta$ = tilt increment (radians)<br>resolution d = D $\Delta \theta$                |
| 2. For $\Delta \theta$ = tilt increment (degrees)<br>f = resolution in frequency (reciprocal space) units<br>f = 57.3 / (D $\Delta \theta$ ) |
| 3. For n = number of views<br>$\theta_{max}$ = maximum tilt angle<br>f = 28.5 n / (D $\theta_{max}$ )                                        |
| 4. For θ <sub>max</sub> = ±60°<br>f = 0.48 n / D                                                                                             |















| The Tiltalign Variables |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| • 1<br>t                | <ul> <li>The specimen changes and imaging operations are expressed in erms of 5 variables that Tiltalign can solve for at each tilt:</li> <li>1. Mag: a uniform change in specimen size or microscope magnification</li> <li>2. Tilt: the tilt angle</li> <li>3. Rotation: the rotation of the tilt axis from the vertical</li> <li>4. X-stretch (Dmag): a shrinkage/stretch along the X-axis in the plane of the specimen</li> <li>5. Skew: a change in the angle between X and Y axes</li> </ul> |  |
| • ><br>a                | <-stretch and Skew together represent a linear shrinkage along<br>an arbitrary axis (distortion)                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| • 1<br>V                | <ul> <li>Filtalign can also solve for three variables that are the same for all views:</li> <li><b>1.</b> Beam tilt: the angle between the tilt axis and the perpendicular to the beam axis</li> <li><b>2.</b> Projection skew: a change in the angle between X and Y axes resulting from stretch during projection</li> <li><b>3.</b> X-axis tilt: a tilt around the X axis between two halves of a bidirectional tilt series</li> </ul>                                                          |  |









