Alignment and Other Challenges in Reconstructing Cryotomograms with IMOD

Challenges in Cryotomography

- · Alignment, alignment, alignment
 - It can be hard to get fiducials onto/in the sample
 - The low SNR makes the fiducial positions more uncertain
 - Fiducials are often essentially in a plane, restricting the kind of alignment solution that can be sought
 - Energy filtering, good for cryoimaging, introduces geometric distortions that impair alignment (correctable in IMOD, minimal in new filters)
 - The ice does change (deform) over course of tilt series
 - Cryosections are even harder to get fiducials on, tend to change more under the beam, and fiducialless alignment works worse because of crevasses

Challenges in Cryotomography

- · Alignment, alignment, alignment
 - It can be hard to get fiducials onto/in the sample
 - The low SNR makes the fiducial positions more uncertain
 - Fiducials are often essentially in a plane, restricting the kind of alignment solution that can be sought
 - Energy filtering, good for cryoimaging, introduces geometric distortions that impair alignment (correctable in IMOD)
 - The ice does change (deform) over course of tilt series
 - Cryosections are even harder to get fiducials on, tend to change more under the beam, and fiducialless alignment works worse because of crevasses.
- Contrast is low and artifacts from gold become more prominent
 Erasing gold may be particularly helpful
- SNR is low and filtering/denoising may be needed to see features of interest

Use a Template in Etomo					
 The cryoSample default values for Filter setting for Patch size for the value You can substitut even better value 	template distributed with IMOD has cryo reconstructions, e.g., r centering gold beads better when trac racking image patches for alignment te a system template or make a use s, but in any case, you should use s	~10 useful ^{king} r template with something			
Template	\$				
Scope ter	mplate: None available	-			
System te	emplate: No selection (2 available)	-			
User temp	plate: No selection (2 available) cryoSample.adoc plasticSection.adoc				
Scan	h Header Pixel size (nm):				

 X-ray events and extreme values in images are found in two ways: Looking for pixels higher than background by extreme amounts (controlled by "peak criterion") Looking for pixels that differ from adjacent ones by extreme amounts (controlled by "difference criterion") The default criteria in the cryo template are a good starting point. If more points need to be removed, lower both criteria by 1 The best way to judge if removal is sufficient is from output of Min/Max values 	Extreme Value Removal					
Create Fixed Stack View Fixed Stack Use Fixed Stack	 X-ray events and extreme values in images are found in two ways: Looking for pixels higher than background by extreme amounts (controlled by "peak criterion") Looking for pixels that differ from adjacent ones by extreme amounts (controlled by "difference criterion") The default criteria in the cryo template are a good starting point. If more points need to be removed, lower both criteria by 1 The best way to judge if removal is sufficient is from output of Min/Max values 					
	Create Fixed Stack Vie	ew Fixed Stack	Use Fixed S	tack		
Show Min/Max for Raw Stack Fixed Stack	Show Min/Max for Raw Stack	Sh	how Min/Max for Fixed Stack			

<u>«</u>	Stat	istics	Before	e and	d Afte	er X-ra	ay Remo	val
view 1 2 3 4 5 6 7 8 9 10 11	min (-595.0000 (22 -583.0000 (22 -583.0000 (22 -543.0000 (22 -594.0000 (22 -594.0000 (22 -591.0000 (22 -578.0000 (22 -578.0000 (22)	<pre>x, y) 20,1130) : 20,1130) : 20,1130) : 20,1130) : 20,1130) : 20,1130) : 20,1130) : 20,1130) : 20,1130) :</pre>	max [×, 356, 10, 1015, 637, 1991, 1919, 1866, 1234, 424, 1164, 252.	y) 1243) 1038) 378) 922) 569) 738) 1526) 971) 296) 760) 568)	mean 56.6928 58.9421 62.3637 65.3897 68.5710 70.3252 72.7389 74.4710 74.2311 77.1407 78.3838	std dev. 26.2009 26.3049 26.4552 26.4552 26.5550 26.1427 26.1457 26.1457 26.1457 26.550 26.1427 26.1457 27.517 27.5620 24.6603	Before Min and max values that stand out are marked with *
✓ c:	127_bpv_2_4_09 min (9_1a_fixe x, y) 	d.st_stats.ld	2 9 x, 1177, 1164,	y) - 996) 775)	mean 56.6901 58.9417	×	After
3 4 5 6 7 8	-6.0000 (32 -7.0000 (91 -8.0000 (73 -29.0000*(36 -6.0000 (70 -5.0000 (36	22, 115) 17, 1920) 39, 1931) 59, 987) 99, 1717) 55, 74) 54, 101)	189.0000 (202.0000 (205.0000 (197.0000 (220.0000 (208.0000 (195.0000 (1135, 1229, 1271, 1271, 1309, 1216, 1309.	907) 883) 968) 899) 890) 875) 1019)	62.3641 65.3889 68.5707 70.3254 72.7376 74.4712 74.2307	26.6285 26.4300 26.5228 26.1359 26.0193 25.5031 25.6368	

	Extreme Value Removal				
٥	 X-ray events and extreme values in images are found in two ways: Looking for pixels higher than background by extreme amounts (controlled by "peak criterion") 				
	 Looking for pixels that differ from adjacent ones by extreme amounts (controlled by "difference criterion") 				
٠	The default criteria in the cryo template are a good starting point. – If more points need to be removed, lower both criteria by 1				
٠	The best way to judge if removal is sufficient is from output of Min/Max values				
•	You need to push "Use Fixed Stack" to replace original stack with the fixed stack				
•	 You could then iterate, but the program now does 3 iterations, so manual iteration should not be needed much 				
	Create Fixed Stack View Fixed Stack Use Fixed Stack				
	Show Min/Max for Raw Stack Fixed Stack				

Points on Alignment Specific to Cryo

- Solving for distortion (stretching)
- Solving for beam tilt
- Local alignments
- Dealing with few beads

Distortion (Stretching) Solution is Rarely Helpful Solving for stretch requires a good distribution of fiducials in Z, which is usually not the case for cryoET There are fewer of the kind of changes that it can correct for than with plastic sections Section thinning is corrected by this solution

Guidelines for Adjusting Variables by Hand 5 Fiducials: Group all variables (magnification and rotation). Or solve for one rotation and beam tilt to get M/U near 4. 4 Fiducials: You should be able to solve for one grouped variable, e.g., group magnification and solve for one rotation and beam tilt. You may be able to solve for two grouped variables instead. 3 Fiducials: You can certainly solve for one rotation angle and beam tilt (M/U near 3) With well-distributed points you may be able to solve for one grouped variable (magnification or rotation would be more reliable). 2 Fiducials: If points are well-separated you should be able to solve for one rotation angle and beam tilt (M/U near 2)

- 1 Fiducial:
 - You can solve for translation only fix all variables (M/U = 1)

Using Subtomosetup to Avoid Huge Unbinned Volumes

- Goal: "Extract" full-resolution particles from tomogram for alignment without making full unbinned tomogram
- Method:
 - Make binned aligned stack and tomogram
 - Select particles on binned tomogram or volume derived from it
 - Make unbinned aligned stack
 - Run Subtomosetup to make command files for generating subtomograms at each particle position
 - Run Processchunks (Parallel Processing in Etomo) on command files
- · Flexibility with restrictions
 - "The program allows considerable flexibility as long as several restrictions are followed."
 - I.e., you have to follow 7 rules!
 - This is easy if you work within IMOD it can take account of coordinate changes from trimming and rotation/flipping
 - If you work with external software you can either preserve the coordinate information or provide a simple point list

Using Subtomosetup to Avoid Huge Unbinned Volumes Subtomosetup -root series4 -volume series4.rec -center particles.mod \ -size 100,100,100 -dir subtomos -proc 16 -root: data set root name -volume: name of volume that was modeled (at least its header must be present) -center: model of particle centers (or point list) -size: size of subtomograms to make, after final rotation if any -dir: directory to put subtomograms in -proc: expected number of processors, determines how it divides particles into command files