Resampling: Changing Voxel Size

Why Resample?

- Initial modeling may be easier / more accurate after binning / down-sampling and perhaps NAD (or other) filtering
- Initial alignment / averaging is much faster with down-sampled data (time ${ }^{\sim}$ voxels ${ }^{3}$).
- Final alignment typically unbinned for best resolution

Examples: Binning with IMOD

- binvol -a 5 -b 2 vol.rec vol_bin2.rec
- binvol -a 5 -b 3 vol.rec vol_bin3.rec
- -a 5: Lanczos 2-lobe anti-alias filtering
- -b <n>: bin by integer factor <n> in all dimensions
- squeezevol: non-integer factors or expansion

Transforming Models for Resampling

- 3dmod (often) automatically handles volume rotation / scaling / translation
- PEET does not! Model coordinates must be converted to volume voxel coordinates
- Solution: transform model to match the volume
- imodtrans -i vol.rec vol_bin2.mod vol.mod

Transforming Motive Lists

- Motive lists contain both angles and shifts
- Shifts (columns 11-13) need to be scaled
- Other columns must not be
- Easily done with any spreadsheet program
- csv files are easily modified text files
- 2-step process:
- Create scaled model(s) with imodtrans -i
- Created scaled motive lists with spreadsheet

An Alternative Easier Way...

- Use createAlignedModel to generate:
- Aligned model(s) with final positions
- Aligned motive list(s) with angles and all shifts $=0$
- Aligned motive list(s) apply to any voxel size!
- Use imodtrans to generate a resampled model
- Still 2 steps, but
- Avoids manual editing of motive lists
- Aligned motive lists apply to any voxel size

createAlignedModel and rotAxes Files

- So far, particle Y axes have been implicit
- In some cases (e.g. using meshlnit, stalkInit, spikelnit or user-specified Y axes), explicit rotAxes files will be present
- createAlignedModel also generates new rotAxes file(s) with revised estimate of axes
- New estimates typically better if alignment is good
- Use with caution if initial alignment is poor!

Questions?

