I. Introduction to Subvolume Alignment / Averaging with PEET

Subvolume Alignment \& Averaging

- Aligning and averaging large numbers of "identical" 3D subvolumes to
- Fill in (partially or completely) missing data in Fourier space (a.k.a. the "missing wedge")
- Improve signal-to-noise ratio (SNR)
- Subvolume and particle are synonyms here
- Need not be an isolated particle.
- E.g. repeating subunits along a higher order structure

"Identical" Subvolumes?

- Biological samples are usually heterogeneous
- We will discuss checking for and handling this
- Eliminate unnecessary variation beforehand!
- Mixed samples
- Imaging conditions... magnification, HV, etc.
- Contrast
- Ice thickness
- Filament polarity
- And so on...

SVA Compared to SPA

- SVA
- Uses 3D volumetric data from each article
- Is good for in vivo or in situ data and portions of higher order structures, where unobstructed projections of individual particles are difficult or impossible to obtain
- Typically yields lower resolution results than SPA for a given amount of input data
- Note on terminology: SVA \approx STA \approx SPT

Rough Guidelines / Rules of Thumb

- Use voxel size \leq (target resolution) / 3
- 100 well-oriented particles can greatly suppress missing wedge artifacts
- SNR (in amplitude) scales like \sqrt{n}
- Typically, need 500-5000 particles for SNR
- $\mathrm{n}=5000-10,000$ often yields $\sim 2.5 \mathrm{~nm}$ resolution
- Sub-nm requires $n>10,000$ and careful handling
- Subvolumes from 32^{3} to 128^{3} voxels are typical

PEET: Subvolume Alignment / Averaging

- Separate package, for use with IMOD
- Open source, freely available from http://bio3d.colorado.edu/PEET
- Online guides, man pages, tutorial videos, and discussion group
- Supports 64-bit Linux, OS X, and Windows
- IMOD's Etomo Graphical UI for common operations
- Command line for flexibility / advanced operations

PEET: Subvolume Alignment / Averaging

- Computationally demanding
- At least 12-64 cores are useful for typical applications
- Parallelism via IMOD mechanisms:
- Multiple cores on local machine
- Passwordless ssh to nodes on local network
- Cluster computing (Pbs, Pbs-Maui, Sge, and Slurm supported)
- Configured via cpu.adoc. (See IMOD documentation for details... especially cpuadoc and processchunks man pages).
- Currently no GPU support

PEET: Key Alignment Features

- Initial subvolume centers in an IMOD model
- All Points in Object 1 = centers
- No need to "box out" subvolumes
- Rotations / translations: Motive Lists
- Typically in file(s) named *MOTL*.csv
- Reference volume: something to align to
- Per-particle rotation (Y) axis
- May be missing, defaulted, or automatically generated but effectively always present!

Multiple Coordinate Systems

- Global / Tomogram coordinates
- Fixed
- Used for subvolume centers, motive list rotations / translations, and search distances
- Per-particle coordinates
- Attached to and move with each particle
- Particle $\mathrm{Y}=$ particle rotation axis
- Used to specify angular searches

3D Rotations In PEET

- Etomo angular search ranges: $\mathrm{Y}(\phi)-Z(\Theta)-X(\Psi)$ in particle coordinates (fixed at start of search)
- Motive list entries: Z-X-Z Euler angles in global coordinates
- IMOD Slicer angles: Z-Y-X angles in global coordinates
- Confusing variety!
- You will seldom have to deal with this directly

Questions?

A Few Words on Logistics...

- Presentations will cover concepts
- Lab exercises will explore details
- We will announce time available for each lab
- Try to pace yourself and complete topics of greatest interest
- Okay if you can't complete all the exercises
- Labs designed and available for your later use
- We will skip most alignments to save time

