Semi-Automatic Particle Picking

Manual Particle Picking Is Not Fun

- Can it be avoided? Yes, sometimes!
- Ideal cases: just need to pick 1 particle!
- More typical:
- Manually pick a sample
- Align and average
- Use to find similar particles... e.g. by template matching

Can I Pick Particles Using Program <X>?

- Yes! If you can translate the results to the format PEET needs:
- Pixel coordinates of subvolume centers
- Point2model can convert these to a 3dmod model
- Initial motive list Euler angles
- Angles can be all 0's (e.g. if using spherical search)
- Rotation axes
- Easily manipulated csv format
- Can just use tomogram Y if doing spherical search

Semi-Automated Picking in PEET

- PEET searches position and orientation
- Finds single best alignment in a limited region
- Not well suited for
- Finding many candidates
- In a very large volume
- A Workaround...
- Split large volume up into many small volumes
- Seed each with a candidate particle
- After alignment, choose the best candidates

A Case Where 1 Point Suffices!

~30 nm Slice of Sonic Muscle Z-line (with Pradeep Luther)

Sonic Muscle Picking Strategy

- Seed points with gridlnit
- Drawing tools eraser to clean up initial seeds
- 1 manually picked point as a starting reference
- Align and average
- Threshold by cross-correlation
- E.g. use selectClassID and createAlignedModel
- Manually remove bad points - not needed here
- Symmetrize

More Typically...

- Align and average several hundred particles
- Use the resulting average as a template to find additional particles (often in other volumes)
- Template matching in PEET
- Select "No reference refinement" in Etomo
- "flgNoReferenceRefinement = 1" in prm file
- Beware of Reference Bias
- Bin or low-pass filter the template
- Final locations should look as if manually picked

Semi-automated Particle Picking

- Widely applicable
- 2D crystals
- Isolated particles (will explore BPV in exercise)
- Spikes / fusion proteins
- Membrane associated proteins
- PEET tools / programs are fairly flexible
- Strategy / details will vary with application

Before Thresholding
After Thresholding
Pseudo-colors (inserted by createAlignedModel) reflect cross-correlation coefficient

Questions?

